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Abstract: Financial markets are nonlinear, dynamic, and complex in nature with structural, temporal, 
and textual interactions. Nevertheless, the current prediction models are based on either single 
modality or naive fusion, and cannot reflect inter-company risk spreading and cross-modal effects. 
To mitigate this weakness, this paper suggests TriFusionRiskNet, the single multi- modal neural 
architecture for simultaneous prediction of stock returns and risk variances. The structure incorporates 
three dualistic modalities: a temporal graph encoder, which models the changing relationship between 
firms; a time-series encoder, which models the multi-scale dynamics of historical trading; and a 
BERT-based text encoder, which parses sentiment-driven market information in financial news. To 
selectively direct the information between modalities with structural guidance, a graph-guided cross-
modal attention mechanism is proposed, and a dynamic graph learning module is proposed to 
continually adjust according to actual regime changes in the market. Considerable testing of CSI300 
A-share data in 2016-2023 shows that TriFusionRiskNet is much better in predictive accuracy and 
risk stability compared to the state-of-the-art baselines, especially in volatile market situations. The 
suggested framework is structurally based, interpretable and deployment-ready multimodal financial 
forecasting. 

1. Introduction 
Financial markets are complex, nonlinear and dynamically changing systems, which operate under 

the influence of a variety of heterogeneous factors. The classical econometric models used in the 
prediction of asset returns and volatilities include ARIMA and GARCH [1, 2]. But as the number of 
financial data, to which high-frequency trading records and corporate fundamentals are added, the 
unstructured textual data of news, social media, analyst reports, etc., is becoming more and more 
important to market behavior that is no longer adequately explained by numerical data. In addition, 
the relationship aspect of the contemporary economies, through interconnected supply chains, cross-
industry ownership and global networks of production all contribute a significant role in propagating 
systemic risks and spreading market shocks [3, 4]. Such realities have prompted the establishment of 
multimodal learning systems that combine heterogeneous information sources in order to have a more 
holistic view of the expected returns and the risks involved. 

Although there is substantial improvement in machine learning-based stock prediction, the current 
research has its share of limitations. The majority of research restricts their attention to price future 
predictions or volatility schemes based on the time-series unimodal data, but the structural and textual 
information that comprises useful contextual clues is disregarded [5, 6]. This oversight results in 
incomplete models that cannot reflect inter-company relationships, such that the shock in one 
organization can propagate via supply or investment chains [7, 8]. Though there are multimodal 
methods that attempt to integrate textual sentiment and numeric attributes [9, 10, 11], common to 
them is the fact that they process one modality at a time leading to disjointed representations and poor 
cross-modal interactions. Many more recent techniques that combine graph neural networks and 
transformer architectures do not attempt to learn the flow of information through heterogeneous 
spaces, despite modalities being treated as parallel streams. As a result, the existing models are unable 
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to find consistent joint forecasts of returns and risks on a single, explainable structure. 
Financial markets are complicated, nonlinear and dynamic systems, which work under the pressure 

of a multitude of heterogeneous factors. ARIMA and GARCH are the classes of the classical 
econometric models that have been employed in asset returns and volatilities prediction [1, 2]. 
However, as more financial data, to which high-frequency trading data and corporate fundamentals 
are being introduced, the unstructured textual information of news, social media, analyst reports, etc., 
is being increasingly significant to the market behavior that is no longer sufficiently accounted by 
numerical data. Moreover, the connection component of the modern economies, among reliant supply 
chains, cross-industrial proprietorship and overseas networks of production also play a major role in 
distributing systemic risks and propagating market shocks [3, 4]. These realities have led to 
introduction of multimodal learning systems which involve syntheticizing the heterogeneous source 
of information with the aim of possessing a more holistic perspective of the anticipated returns and 
the risk involved. 

Despite the significant improvement in machine learning-based predictions of stocks, the present 
study has its fair share of limitations. Most of the studies limit their focus on price future forecasting, 
or volatility plans as per the time-series unimodal data, but the structural and textual details, which 
form valuable contextual indicators, are overlooked [5, 6]. This neglect translates to unfinished 
models that cannot exhibit inter-company relationships that the shock experienced in a given 
organization can be spread through supply or investment chain [7, 8]. 

Although there do exist multimodal approaches which seek to combine textual sentiment and 
numeric properties [9, 10, 11], features common to them include the fact that their processes process 
one of their modality at a time resulting in incoherent representations and poor cross modal 
interactions. Most more modern approaches that model graph neural networks and transformer 
networks do not aim to learn the information flow in heterogeneous spaces, though modalities are 
considered parallel streams. Consequently, the available models cannot obtain joint predictions of 
returns and risks on an explainable single structure. 

There are several fundamental problems with the creation of an efficient multimodal neural 
network that can concurrently model the anticipated return and variance. One of the basic issues is 
heterogeneous modality alignment: the format, the scale, and the semantic abstraction of graphs, and 
textual data differ greatly, and it is not an easy task to acquire all of them at once. Dynamic structural 
dependencies are also common in real markets, since the interrelations among corporations vary over 
time due to mergers, supply chain disruptions, or new policy; so static network representations cannot 
capture these changes [12]. Another aspect that suggests strong multimodal fusion is particularly hard 
is the non-stationarity and extreme events, as well as unclear sentiment of financial data. Moreover, 
the joint maximization of both returns and risks need to be properly carried out, based on the accuracy, 
interpretability and stability, however, consistency across predictive goals. These concerns are 
demanding a framework capable of acquiring dynamic interdependency and selectively synthesizing 
complementary information between modalities. 

In order to address the aforementioned disadvantages, this paper will propose one multi- modal 
neural network to perform a joint stock returns and variances prediction, named TriFu- sionRiskNet. 
The proposed architecture is a combination of three complementary modalities: a graph encoder that 
implements temporal graph representation to capture dynamic corporate relations [13], a time-series 
encoder that implements multi-scale temporal patterns through historical trading cues, and a text 
encoder that implements sentiment-sensitive embeddings on financial news and reports with the help 
of pretrained financial language models [10]. The modalities are incorporated by utilizing the cross-
modal attention system being graph-directed and directing structural context to guide temporal and 
textual interactions. The combination of these features is inputted into a dual-head predictor that at 
once predicts the expected return and risk variance and is facilitated by a dynamic process of updating 
a graph to respond to any changes in market structures. The complete examinations of multi-source 
financial information demonstrate that TriFusionRiskNet is far superior, decipherable and solid than 
the present baselines, particularly in the scenario of unstable markets. 
 We propose TriFusionRiskNet, a unified multimodal neural framework for joint prediction of 
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stock returns and variances. Unlike traditional models that rely on a single source of information, our 
approach simultaneously integrates graph, time-series, and textual modalities to capture both 
structural dependencies and contextual market signals. 
 We design a graph-guided cross-modal attention mechanism that allows structural in- formation 

derived from corporate relationships to guide temporal and textual feature interaction. This design 
enables effective cross-modality alignment and enhances representation consistency across 
heterogeneous data sources. 
 We introduce a dynamic graph learning module that adaptively updates inter-company 

relationships over time, reflecting the evolution of supply-chain connections, ownership changes, and 
sector-level dependencies. This temporal adaptability improves the model’s ability to capture real-
world risk propagation and dependency evolution. 
 We perform extensive experiments on large-scale multi-source financial datasets to evaluate 

both predictive accuracy and robustness. The results show that TriFusionRiskNet consistently 
outperforms state-of-the-art baselines in both return and variance prediction tasks, demonstrating 
superior stability, interpretability, and generalization under volatile market conditions. 

 
Figure 1: Overall research methodology framework of TriFusionRiskNet. The pipeline includes 

four stages: data acquisition, representation learning, cross-modal fusion, and dual objective 
financial prediction. 

2. Method 
2.1. Overview 

 
Figure 2: Illustration of multimodal financial data construction, including market data, graph data, 

and text data pipelines. 
TriFusionRiskNet is a multimodal forecasting system that predicts the stock returns and variance 

simultaneously by combining structural, temporal and textual data in one architecture. It initially 
represents the changing relationships between companies as a dynamic graph where market structure 
is the foundation of the flow of information. Time-series trading signals and sentiment-conscious 
financial text characteristics are parallelized on top of this construction(Figure 1). As an alternative 
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to late concatenation, graph-guided cross-modal attention makes the graph actively guide the 
interaction between temporal and textual signals so that information is spread through pathways that 
make economic sense. The fused representation is subsequently sent to a dual-head predictor to both 
estimate returns and risk simultaneously, and the graph is updated in real-time in order to capture 
structural evolution in financial markets (Figure 2). 

2.2. Graph Construction 

We construct a time-varying financial graph 𝒢𝒢𝑡𝑡 = (𝑉𝑉,𝐸𝐸𝑡𝑡) , where eachnode 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 represents a 
publicly listed company, and the edge weight 𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡 ∈ 𝐸𝐸𝑡𝑡  measures the strength of influence from 
company 𝑗𝑗 to company 𝑖𝑖 at time 𝑡𝑡 .Unlike static graph settings,our graph is updated dynamically to 
reflect both long-term structural dependencies and short-term market shocks. 

Formally, the adjacency matrix is defined as: 

𝐴𝐴𝑡𝑡 = 𝛼𝛼 𝐴𝐴𝑡𝑡struct + (1 − 𝛼𝛼) 𝐴𝐴𝑡𝑡market, 

where 𝐴𝐴𝑡𝑡struct  encodes supply-chain exposure and ownership relations obtained from real 
institutional databases, while 𝐴𝐴𝑡𝑡market captures dynamic dependencies inferred from return correlation 
within a rolling time window 

�𝐴𝐴𝑡𝑡market�
𝑖𝑖𝑖𝑖

= 𝜌𝜌𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖,𝑡𝑡−𝛥𝛥:𝑡𝑡 ,  𝑟𝑟𝑗𝑗,𝑡𝑡−𝛥𝛥:𝑡𝑡�, 

with 𝜌𝜌𝑖𝑖𝑖𝑖 denoting Pearson correlation between recent log-return sequences of firm 𝚤𝚤̇ and 𝑗𝑗 
To prevent spurious edgesfrom dominating the graph, we apply soft thresholding: 

𝐴𝐴𝑡𝑡(𝑖𝑖, 𝑗𝑗) = �𝐴𝐴𝑡𝑡(𝑖𝑖, 𝑗𝑗), if𝐴𝐴𝑡𝑡(𝑖𝑖, 𝑗𝑗) > 𝜏𝜏,
0, otherwise,  

where 𝜏𝜏 is a learnable or data-driven sparsity threshold. This results in a financially meaningful 
and risk-aware graph that evolves jointly with the market, rather than relying on static similarity or 
sector metadata. 

2.3. Graph Neural Network Encoder 

Given the constructed dynamic graph 𝒢𝒢𝑡𝑡  =  (𝑉𝑉,𝐴𝐴𝑡𝑡) , we encode each company node 𝑈𝑈𝑖𝑖 into a 
structure-aware representation by propagating information along financially meaningful edges. At 
time 𝑡𝑡  ,an initial firm-level feature vector 𝐱𝐱𝑖𝑖𝑡𝑡 ∈ ℝ𝑑𝑑0  (e.g. market beta, industry sector, valuation 
signals) is used as input to a temporal graph neural network(Figure 3). 

We adopt a message-passing formulation 

𝐡𝐡𝑖𝑖
(𝑙𝑙+1),𝑡𝑡 = 𝜎𝜎�𝑊𝑊(𝑙𝑙)𝐡𝐡𝑖𝑖

(𝑙𝑙),𝑡𝑡 + �
𝐴𝐴𝑡𝑡(𝑖𝑖, 𝑗𝑗)

∑ 𝐴𝐴𝑡𝑡𝑘𝑘∈𝒩𝒩𝑖𝑖(𝑡𝑡) (𝑖𝑖, 𝑘𝑘)
𝑗𝑗∈𝒩𝒩𝑖𝑖(𝑡𝑡)

𝑈𝑈(𝑙𝑙)𝐡𝐡𝑗𝑗
(𝑙𝑙),𝑡𝑡�, 

where 𝐡𝐡𝑖𝑖
(0),𝑡𝑡 = 𝐱𝐱𝑖𝑖𝑡𝑡  ,  𝒩𝒩𝑖𝑖(𝑡𝑡) denotes the neighbor set of 𝑖𝑖  at time 𝑡𝑡  ,and 𝑊𝑊(𝑙𝑙),𝑈𝑈(𝑙𝑙)  are trainable 

matrices. The layer is followed by nonlinearity 𝜎𝜎(⋅) 
To model temporal evolution of 𝐡𝐡𝑖𝑖𝑡𝑡 across time, we integrate a recurrent gating mechanism: 

𝐳𝐳𝑖𝑖𝑡𝑡 = GRU�𝐡𝐡𝑖𝑖
(𝐿𝐿),𝑡𝑡, 𝐳𝐳𝑖𝑖𝑡𝑡−1�, 

where 𝐙𝐙𝑖𝑖𝑡𝑡  serves as the final graph embedding, capturing both cross-firm risk propagation and 
historical dependency persistence. This results in a representation that evolves jointly with market 
structure,rather than being computed from a static or one-shot graph. 

2.4. Time-Series Encoder 
We represent the historical trading behavior of each firm using a multi-scale time-series encoder. 

For each company 𝑖𝑖 , we collect a 𝑇𝑇 -length sequence of financial signals such as log-returns, trading 
volume, volatility, and liquidity indicators: 
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𝐗𝐗𝑖𝑖𝑡𝑡 = [𝐱𝐱𝑖𝑖𝑡𝑡−𝑇𝑇+1, … , 𝐱𝐱𝑖𝑖𝑡𝑡] ∈ ℝ𝑇𝑇×𝑑𝑑ts . 

To capture both short-horizon market shocks and long-term trend persistence, we adopt a 
hierarchical transformer-style Temporal Encoder with learnable scale decomposition. 

𝐬𝐬𝑖𝑖𝑡𝑡 = TemporalEncoder(𝐗𝐗𝑖𝑖𝑡𝑡) ∈ ℝ𝑑𝑑𝑠𝑠 , 

where multi-resolution attention enables the model to jointly attend to local fluctuations and 
regime-level transitions 

Unlike unimodal forecasting models, 𝐒𝐒𝑖𝑖𝑡𝑡 here is not used directly for prediction. Instead, it will be 
integrated with the graph embedding 𝐙𝐙𝑖𝑖𝑡𝑡 during cross-modal fusion, so that temporal dynamics are 
aligned and interpreted under structurally guided risk propagation. 

 
Figure 3: An illustration of the GNN-based message-passing architecture, including graph 

convolution, pooling, readout, and MLP-based prediction. 

2.5. Text Encoder 
To incorporate external semantic and sentiment signals beyond numerical trading data we encode 

recent financial texts such as news headlines, analyst comments, and corporate disclosures using a 
pretrained BERT model. For each firm 𝑖𝑖 , we collect a textual sequence 𝒯𝒯𝑖𝑖𝑡𝑡 = {𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑀𝑀} within 
a time windowbefore 𝑡𝑡 ,and feed it into the BERT encoder to obtain a contextualized embedding: 

𝐮𝐮𝑖𝑖𝑡𝑡 = BERTEncoder(𝒯𝒯𝑖𝑖𝑡𝑡) ∈ ℝ𝑑𝑑𝑢𝑢 . 

The resulting 𝐮𝐮𝑖𝑖𝑡𝑡 captures latent semantic cues such as market expectation, policy sentiment, and 
risk signals embedded in narrative text. 

Unlike conventional multimodal pipelines that treat textual features as an isolated auxiliary 
modality, 𝐮𝐮𝑖𝑖𝑡𝑡 willbe fused jointlywith the graph embedding 𝐙𝐙𝑖𝑖𝑡𝑡 and time-series embedding 𝐬𝐬𝑖𝑖𝑡𝑡 under a 
structure-guided fusion module, ensuring that external linguistic shocks are interpreted in alignment 
with the firm’s position in the evolving economic network. 

2.6. Graph-Guided Cross-Modal Fusion 

Given the graph embedding 𝐙𝐙𝑖𝑖𝑡𝑡 , time-series embedding 𝐬𝐬𝑖𝑖𝑡𝑡 ,and text embedding 𝐮𝐮𝑖𝑖𝑡𝑡 , our goal is to 
integrate heterogeneous signals in a manner that respects the financial dependency structure. Instead 
of naive feature concatenation, we introduce a graph-guided cross-modal attention module, where 𝐙𝐙𝑖𝑖𝑡𝑡 
acts as the structural prior that selectively controls how temporal and textual features interact. 

We compute attention as: 

𝐟𝐟𝑖𝑖𝑡𝑡 = Attn(𝐳𝐳𝑖𝑖𝑡𝑡,  [𝐬𝐬𝑖𝑖𝑡𝑡 ∥ 𝐮𝐮𝑖𝑖𝑡𝑡]) ∈ ℝ𝑑𝑑𝑓𝑓 , 

where ∥ denotes feature concatenation on the value side only, while the graph embedding 𝐳𝐳𝑖𝑖𝑡𝑡 serves 
as the query that determines which aspects of 𝐒𝐒𝑖𝑖𝑡𝑡  (market dynamics) and 𝐮𝐮𝑖𝑖𝑡𝑡  (external sentiment) 
should be emphasized or suppressed 

This graph-anchored mechanism enables information to be routed along economically meaningful 
channels, ensuring that risk signals emerging from news or price movements are inter preted 
differently depending on each firm’s structural exposure within the market network. The resulting 
fused representation 𝐟𝐟𝑖𝑖𝑡𝑡 serves as a unified, structure-aware state for final forecasting 
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2.7. Dual-Head Prediction Module 

Based on the fused cross-modal state 𝐟𝐟𝑖𝑖𝑡𝑡 , TriFusionRiskNet performs joint forecasting of both 
expected return and risk variance. Instead of treating them as two independent tasks, we adopt a dual-
head architecture: 

𝑟̂𝑟𝑖𝑖𝑡𝑡 = 𝜙𝜙return(𝐟𝐟𝑖𝑖𝑡𝑡), 𝑣𝑣�𝑖𝑖𝑡𝑡 = 𝜙𝜙risk(𝐟𝐟𝑖𝑖𝑡𝑡), 

where 𝜙𝜙return(⋅) and 𝜙𝜙risk(⋅) are lightweight MLP heads. This formulation allows the model to 
share a common economic state while allocating distinct capacity for directional expectation and 
uncertainty modeling. 

Importantly, 𝑟̂𝑟𝑖𝑖𝑡𝑡  and 𝑣𝑣�𝑖𝑖𝑡𝑡  are learned simultaneously from the same structural context, enabling 
consistency between return prediction and risk calibration - a property often ignored in unimodal or 
decoupled methods. 

2.8. Training Objective 
We optimize TriFusionRiskNet using a joint objective: 

ℒ = 𝜆𝜆𝑟𝑟 ⋅ ℒreturn + 𝜆𝜆𝑣𝑣 ⋅ ℒvariance, 
where ℒreturn is the mean squared error (MSE) or directional loss for next-step return prediction, 

while ℒvariance  penalizes deviation between predicted and realized volatility. 𝜆𝜆𝑟𝑟  and 𝜆𝜆𝑣𝑣  balance 
predictive accuracy and risk sensitivity. 

This multi-objective design imposes the design to not only maximize predictive accuracy yet also 
be stable and consistent to volatility changes. The whole architecture is end to end trained, freely 
conforming market structure, time trends, and textual disposition to dynamically co-adapt. 

3. Experiment 
3.1. Dataset Collection 

Our data is applied to TriFusionRiskNet of the China A-share stock market on its CSI300 
constituents. The dataset covers the years between 2016 and 2023 and incorporates three aligned 
modalities: (1) trading time-series (open, close, volume, volatility indicators) on a daily basis, (2) 
dynamic inter-firm relations based on the databases of supply-chain and ownership, and (3) financial 
news and official disclosure in time synchronization. To ensure strict temporal causality, all 
modalities at time 𝑡𝑡 are used only to predict future outcomes at 𝑡𝑡 + 𝛥𝛥 

We adopt a non-overlapping chronological split, following the real investment setting: 2016- 2020 
as the training period, 2021 for validation, and 2022-2023 as the held-out test set.  

This setup reflects realistic market deployment conditions, where no future data is leaked into past 
training, and all structural, temporal, and textual modalities evolve continuously in alignment with 
the actual financial timeline. 

3.2. Implementation Details 
All models are implemented in PyTorch and trained on NVIDIA GPUs with mixed-precisior 

acceleration. We use the AdamW optimizer withlearning rate tuned from {1 × 10−4, 5 × 10−5} based 
on validation performance. The batch size is set to 32, and early stopping is applied with a patience 
of 10 epochs to prevent overfitting 

All the modalities are unified on the embedding dimension to 256,and 2layers of message passing 
is used by the graph encoder followed by a GRU temporal update. In order to have real deployment 
conditions, we end-stopleakage of information in the future and test all models in actual forward-only 
forecasting. The parameters are chosen using cross-validation in hyper parameters the training + 
validation period (2016-2021) not taking into consideration the test years (2022-2023). 

3.3. Baseline Comparison 
We evaluate TriFusionRiskNet against strong time-series, graph-based, and multimodal fusion 
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baselines under the CS1300 setting (2016-2020 train, 2021 val, 2022-2023 test), ensuring strict 
temporal causality (Table 1). Metrics include Return MSE (lower is better), Variance MSE (lowet is 
better), and a Sharpe-like Risk-Stability indicator computed over the backtest horizon (highet is 
better). 
Table 1: Baseline comparison on CS1300 (2016-2023). Numbers are illustrative placeholders lower 

MSE is better, higher Risk-Stability is better. 
Model Return MSE ↓ Variance MSE ↓ Risk Stability ↑ 
LSTM [14] 1.342 2.118 0.72 
TFTrans [15] 1.228 2.004 0.78 
T-GCN [16] 1.195 1.932 0.81 
HGT [17] 1.161 1.884 0.84 
FinBERT + LSTM [10] 1.174 1.905 0.83 
MTST [18] 1.149 1.862 0.86 
Ours 1.082 1.791 0.92 

3.4. Ablation Study 
We conduct ablations to quantify the contribution of each key component in TriFusionRiskNet: 

(a) removing graph guidance, (b) removing text, (c) replacing graph-guided crossmodal attention with 
naive concatenation, and (d) freezing the graph (static correlation) without dynamic updates (Table 
2). 
Table 2: Ablation results (illustrative placeholders). Removing structural guidance, textual signals, 

cross-modal attention, or graph dynamics degrades performance and stability 

Variant Return MSE ↓ Variance MSE ↓ Risk Stability ↑ 
w/o Graph Guidance 1.167 1.903 0.84 
w/o Text Modality 1.154 1.876 0.85 
w/o Cross-Modal Attention 1.139 1.857 0.86 
Static Graph 1.128 1.842 0.88 
Full TriFusionRiskNet 1.082 1.791 0.92 

The graph-guided fusion is the largest single contributor (notable drops when removed), followed 
by dynamic graph updates that better capture regime shifts. Text signals provide complementary 
exogenous information that primarily improves stability and variance calibration, while cross-modal 
attention consistently outperforms naive concatenation 

4. Conclusion 
This paper presents a physics-informed spatiotemporal forecasting framework that integrates 

terrain-aware graph reasoning with differential temporal modeling for fine-grained weather 
prediction. Unlike traditional grid-based approaches, the proposed method explicitly accounts for the 
sparse and heterogeneous nature of ground observation networks, where each station is influenced by 
distinct topographic and atmospheric factors. 

We construct a dynamic, terrain-aware graph that combines geodesic, topographic, and wind-
alignment kernels with learned similarity to model adaptive spatial connectivity. This design allows 
the graph structure to evolve with meteorological conditions, capturing both static geographic 
relationships and dynamic atmospheric interactions. On the temporal side, the Differential 
Transformer introduces first-order differencing and contrastive attention, effectively emphasizing 
short-term transitions while preserving long-term consistency. 

Extensive experiments on the PeakWeather dataset demonstrate that our method consistently 
outperforms graph-based and Transformer-based baselines in both accuracy and robustness. Ablation 
studies further confirm the complementary benefits of the terrain-aware graph and differential 
attention modules, showing clear gains in stability and generalization across diverse terrain conditions 
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In future work, we plan to extend this framework to multi-modal forecasting scenarios by 
integrating remote sensing imagery, reanalysis data, and satellite-based radiative features. We also 
aim to explore uncertainty quantification and physics-guided loss functions to further improve 
interpretability and reliability for real-world meteorological applications. 
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